If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6k^2+7k-13=0
a = 6; b = 7; c = -13;
Δ = b2-4ac
Δ = 72-4·6·(-13)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-19}{2*6}=\frac{-26}{12} =-2+1/6 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+19}{2*6}=\frac{12}{12} =1 $
| 66=10x+3 | | 9s+9s=90 | | 4-1/3(x-2)=5x | | 9+x/7=-40 | | d+3567=10 | | 5+(-3m)=-10 | | 4/x=14/6 | | r^2+4r-20=0 | | 5-1/6(x+4)=4x | | -23=-5x+-3 | | (45•8)5x-19=12x | | -23=5x+-3 | | 105-21=x | | 3(x-7)×5=32 | | w+11=6w/2 | | -18=-03y | | (6x-21)+75=105 | | 8/p=1.1 | | -12x=9(x+2.13) | | a+2.7=-7.1 | | 3=-14n | | p=(2p-48)/2 | | 1/5(x+0.5)+5.24=3/2x+7/10(x+22) | | 4x=60.x | | X+.08x=328 | | -2n-0n-4=0 | | 4w-8+4w-44=180 | | -2/5w-3/5=1/5 | | -7=5+3n+3n | | 5^(2x-3)=10^(x+2) | | 0.6(10x+22)=4(0.2x+5) | | 85+(6x+5)=180 |